Peptide inhibitors of the essential cell division protein FtsA.

نویسندگان

  • Catherine Paradis-Bleau
  • François Sanschagrin
  • Roger C Levesque
چکیده

The revolutionary era of antibiotics has been overwhelmed by the evolutionary capacity of microorganisms such as Pseudomonas aeruginosa to develop resistance to all classes of antibiotics. In the perspective of identifying new antimicrobials using novel strategies, we targeted the essential and highly conserved FtsA protein from the bacterial cell division machinery of P.aeruginosa. In a series of experiments we cloned, overproduced and purified the FtsA and FtsZ proteins. Expression of FtsA into Escherichia coli cells led to its accumulation in inclusion bodies. We developed a protocol permitting the purification and refolding of enzymatically active FtsA hydrolysing ATP. The purified enzyme was used to screen for peptide inhibitors of ATPase activity using phage display. Selective biopanning assays were done and phages were eluted using ATP, a non-hydrolysable ATP analogue and the protein FtsZ known to interact with FtsA in the divisome during the process of bacterial cell division. We identified two consensus peptide sequences interacting with FtsA and a competitive ELISA was used to identify peptides having high affinity for the target protein. Five of the six peptides synthesized showed specific inhibition of ATPase activity of FtsA with IC50 values between 0.7 and 35 mM. Discovery of peptides inhibiting the essential cell division machinery in bacteria is the first step for the future development of antimicrobial agents via peptidomimetism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli.

ZipA and FtsA are recruited independently to the FtsZ cytokinetic ring (Z ring) and are essential for cell division of Escherichia coli. The molecular role of FtsA in cell division is unknown; however, ZipA is thought to stabilize the Z ring, anchor it to the membrane, and recruit downstream cell division proteins. Here we demonstrate that the requirement for ZipA can be bypassed completely by ...

متن کامل

The hypermorph FtsA* protein has an in vivo role in relieving the Escherichia coli proto-ring block caused by excess ZapC+

Assembly of the proto-ring, formed by the essential FtsZ, FtsA and ZipA proteins, and its progression into a divisome, are essential events for Escherichia coli division. ZapC is a cytoplasmic protein that belongs to a group of non-essential components that assist FtsZ during proto-ring assembly. Any overproduction of these proteins leads to faulty FtsZ-rings, resulting in a cell division block...

متن کامل

Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ.

Elevated levels of FtsA protein block cell division at a very early stage, similar to that caused by inhibition of the action of FtsZ. In contrast, overexpression of FtsA and FtsZ together does not block division. A specific ratio of FtsA to FtsZ protein, therefore, is required for cell division.

متن کامل

Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring.

FtsZ and FtsA are essential for cell division in Escherichia coli and colocalize to the septal ring. One approach to determine what regions of FtsA and FtsZ are important for their interaction is to identify in vivo interactions between FtsA and FtsZ from different species. As a first step, the ftsA genes of Rhizobium meliloti and Agrobacterium tumefaciens were isolated and characterized. In ad...

متن کامل

Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay.

FtsA, a member of the ATPase superfamily that includes actin and bacterial actin homologs, is essential for cell division of Escherichia coli and is recruited to the Z ring. In turn, recruitment of later essential division proteins to the Z ring is dependent on FtsA. In a polar recruitment assay, we found that FtsA can recruit at least two late proteins, FtsI and FtsN, to the cell poles indepen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 2005